On Normal Projective Surfaces with Trivial Dualizing Sheaf

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Arithmetic Self-intersection Number of the Dualizing Sheaf on Arithmetic Surfaces

We study the arithmetic self-intersection number of the dualizing sheaf on arithmetic surfaces with respect to morphisms of a particular kind. We obtain upper bounds for the arithmetic self-intersection number of the dualizing sheaf on minimal regular models of the modular curves associated with congruence subgroups Γ0(N) with square free level, as well as for the modular curves X(N) and the Fe...

متن کامل

On non-projective normal surfaces

In this note we construct examples of non-projective normal proper algebraic surfaces and discuss the somewhat pathological behaviour of their Neron-Severi group. Our surfaces are birational to the product of a projective line and a curve of higher genus.

متن کامل

Faltings Modular Height and Self-intersection of Dualizing Sheaf

is finite under the following equivalence (cf. Theorem 3.1). For stable curves X and Y over OK , X is equivalent to Y if X ⊗OK OK′ ≃ Y ⊗OK OK′ for some finite extension field K ′ of K. In §1, we will consider semistability of the kernel of H(C,L) ⊗ OC → L, which gives a generalization of [PR]. In §2, an inequality of self-intersection and height will be treated. Finally, §3 is devoted to finite...

متن کامل

Trivial Connections on Discrete Surfaces

This paper presents a straightforward algorithm for constructing connections on discrete surfaces that are as smooth as possible everywhere but on a set of isolated singularities with given index. We compute these connections by solving a single linear system built from standard operators. The solution can be used to design rotationally symmetric direction fields with user-specified singulariti...

متن کامل

Foliations on Complex Projective Surfaces

In this text we shall review the classification of foliations on complex projective surfaces according to their Kodaira dimension, following McQuillan’s seminal paper [MQ1] with some complements and variations given by [Br1] and [Br2]. Most of the proofs will be only sketched, and the text should be considered as guidelines to the above works (and related ones), with no exhaustivity nor selfcon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tokyo Journal of Mathematics

سال: 1981

ISSN: 0387-3870

DOI: 10.3836/tjm/1270215159